Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II

نویسندگان

  • Daniela Macconi
  • Luca Perico
  • Lorena Longaretti
  • Marina Morigi
  • Paola Cassis
  • Simona Buelli
  • Norberto Perico
  • Giuseppe Remuzzi
  • Ariela Benigni
  • Jaap A. Joles
چکیده

BACKGROUND Angiotensin II promotes insulin resistance. The mechanism underlying this abnormality, however, is still poorly defined. In a different setting, skeletal muscle metabolism and insulin signaling are regulated by Sirtuin3. OBJECTIVE Here, we investigate whether angiotensin II-induced insulin resistance in skeletal muscle is associated with Sirtuin3 dysregulation and whether pharmacological manipulation of Sirtuin3 confers protection. STUDY DESIGN Parental and GLUT4-myc L6 rat skeletal muscle cells exposed to angiotensin II are used as in vitro models of insulin resistance. GLUT4 translocation, glucose uptake, intracellular molecular signals such as mitochondrial reactive oxygen species, Sirtuin3 protein expression and activity, along with its downstream targets and upstream regulators, are analyzed both in the absence and presence of acetyl-L-carnitine. The role of Sirtuin3 in GLUT4 translocation and intracellular molecular signaling is also studied in Sirtuin3-silenced as well as over-expressing cells. RESULTS Angiotensin II promotes insulin resistance in skeletal muscle cells via mitochondrial oxidative stress, resulting in a two-fold increase in superoxide generation. In this context, reactive oxygen species open the mitochondrial permeability transition pore and significantly lower Sirtuin3 levels and activity impairing the cell antioxidant defense. Angiotensin II-induced Sirtuin3 dysfunction leads to the impairment of AMP-activated protein kinase/nicotinamide phosphoribosyltransferase signaling. Acetyl-L-carnitine, by lowering angiotensin II-induced mitochondrial superoxide formation, prevents Sirtuin3 dysfunction. This phenomenon implies the restoration of manganese superoxide dismutase antioxidant activity and AMP-activated protein kinase activation. Acetyl-L-carnitine protection is abrogated by specific Sirtuin3 siRNA. CONCLUSIONS Our data demonstrate that angiotensin II-induced insulin resistance fosters mitochondrial superoxide generation, in turn leading to Sirtuin3 dysfunction. The present results also highlight Sirtuin3 as a therapeutic target for the insulin-sensitizing effects of acetyl-L-carnitine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance.

Hypertension commonly occurs in conjunction with insulin resistance and other components of the cardiometabolic syndrome. Insulin resistance plays a significant role in the relationship between hypertension, Type 2 diabetes mellitus, chronic kidney disease, and cardiovascular disease. There is accumulating evidence that insulin resistance occurs in cardiovascular and renal tissue as well as in ...

متن کامل

Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase.

Reduced insulin sensitivity is a key factor in the pathogenesis of type 2 diabetes and hypertension. Skeletal muscle insulin resistance is particularly important for its major role in insulin-mediated glucose disposal. Angiotensin II (ANG II) is integral in regulating blood pressure and plays a role in the pathogenesis of hypertension. In addition, we have documented that ANG II-induced skeleta...

متن کامل

Invited Review Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance

Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique C, Stas S, Sowers JR. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 293: H2009– H2023, 2007. First published June 22, 2007; doi:10.1152/ajpheart.00522.2007.— Hypertension commonly occurs in conjunction with insulin resistance and other components of ...

متن کامل

Egg White Ovotransferrin‐Derived ACE Inhibitory Peptide Ameliorates Angiotensin II‐Stimulated Insulin Resistance in Skeletal Muscle Cells

SCOPE The renin-angiotensin system (RAS) is a major contributor to the development of insulin resistance and its related complications. Egg white ovotransferrin-derived tripeptides, IRW (Ile-Arg-Trp), IQW (Ile-Gln-Trp), or LKP (Leu-Lys-Pro) are previously identified as the inhibitors of angiotensin-converting enzyme (ACE), a key enzyme in the RAS. This study aims at determining whether these pe...

متن کامل

Improvement of insulin sensitivity by antagonism of the renin-angiotensin system.

The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015